Category: Catalysis

Structure-Function Relationship in a Highly Efficient CO2 Reducing MOF

A structure-function relationship has been established for a cobalt containing Metal Organic Framework (MOF) that catalyzes carbon dioxide reduction very efficiently. It has been established that the hydroxyl groups coordinated to the metal co-operates to enhance the catalysis by forming H-bond network with CO2. Let’s learn how the authors performed a systematic and thorough investigation on these MOFs.

Bicarbonate Controlling the Rate of CO2 Reduction

This work shows that bicarbonate (HCO3-) is neither a general acid nor a reaction partner in the rate-limiting step of electrochemical CO2 reduction catalysis mediated by planar polycrystalline Au surfaces. Kinetic modeling studies and electrochemical experiments suggest that it acts as a proton donor in steps past the rate-limiting one and a buffer in the solution.

A New Dichlorination of Alkenes: A Radical Twist to a Long-sought Transformation

Title: Electrocatalytic Radical Dichlorination of Alkenes with Nucleophilic Chlorine Sources Authors: Niankai Fu, Gregory S. Sauer, and Song Lin Journal: Journal of the American Chemical Society http://pubs.acs.org/doi/10.1021/jacs.7b09388 Year: 2017 The unsaturated bond of an alkene is one of the most exploited functionalities inside the organic chemist’s…